ADRENAL INSUFFICIENCY — THE CLINICAL MANIFESTATION OF DEFICIENT production or action of glucocorticoids — is a life-threatening disorder that may result from either primary adrenal failure or secondary adrenal disease due to impairment of the hypothalamic–pituitary axis.\(^1\)\(^2\) This article focuses on providing the practicing clinician with new insights into predisposing factors for adrenal insufficiency. When and during what situations should a clinician suspect adrenal insufficiency? What genetic disorders, infections, and medications should be considered? What are the current views on the underlying mechanisms?

The cardinal clinical symptoms of adrenocortical insufficiency, as first described by Thomas Addison in 1855,\(^3\) include weakness, fatigue, anorexia, and abdominal pain, with orthostatic hypotension, salt craving, and characteristic hyperpigmentation of the skin occurring with primary adrenal failure. The acute syndrome constitutes a medical emergency since it may result in a severe hypotensive crisis and clouded sensorium, together with pain in the muscles, joints, or abdomen and fever.\(^1\)\(^2\)

In the diagnostic workup for the disorder, the capacity of the adrenal cortex to respond to corticotropin is tested with the use of the standard short corticotropin test, which measures the serum cortisol level before and 30 or 60 minutes after an intravenous or intramuscular injection of 250 μg of corticotropin.\(^4\) An increase in the serum cortisol level to peak concentrations above 500 nmol per liter (18 μg per deciliter) indicates a normal response. The adrenal responsiveness to an exogenous corticotropin challenge is impaired in most cases of secondary adrenal disease. With mild secondary adrenal insufficiency, however, the hypothalamic–pituitary–adrenal axis may appear intact, with a normal response to a corticotropin challenge. Recent evidence suggests that the 1-μg corticotropin stimulation test is more sensitive than the 250-μg corticotropin test for establishing the diagnosis of secondary adrenal insufficiency.\(^5\)

Once adrenal insufficiency is diagnosed, glucocorticoid replacement is initiated in two or three daily doses; one half to two thirds of the daily dose (15 to 25 mg of hydrocortisone) is given in the morning, in line with the physiologic cortisol-secretion pattern. Mineralocorticoid replacement (0.05 to 0.2 mg of fludrocortisone daily as a morning dose) is required only in the case of primary adrenal insufficiency, and dehydroepiandrosterone replacement (25 to 50 mg) remains an optional treatment.\(^1\)\(^2\)

Management of an acute adrenal crisis consists of immediate intravenous administration of 100 mg of hydrocortisone, followed by 100 to 200 mg of hydrocortisone every 24 hours and a continuous infusion of larger volumes of physiologic saline solution (initially 1 liter per hour) under continuous cardiac monitoring. Timely diagnosis and clinical management of this condition are critical, and physicians in all areas of medicine should be aware of the causes, signs, and symptoms that herald adrenal insufficiency.
HEREDITARY DISORDERS ASSOCIATED WITH ADRENAL INSUFFICIENCY

Hereditary factors are increasingly recognized as playing a critical role in the regulation of the hypothalamic–pituitary–adrenal axis. Genes that have been identified as having such a role include those that encode receptors, transcription factors, and enzymes involved in hormone synthesis or in the regulation of pituitary-gland, adrenal-gland, or target-cell function (Table 1). In addition, certain forms of autoimmune adrenalitis have hereditary components, either with an autosomal recessive pattern of inheritance (autoimmune polyglandular syndrome 1) or with an autosomal dominant pattern involving incomplete penetrance (autoimmune polyglandular syndrome 2).

Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is one of the more common causes of hereditary adrenal disorders, with the classic form having an overall incidence of 1 case in 15,000 live births. The carrier frequency of classic congenital adrenal hyperplasia is approximately 1 in 60 persons. Patients with classic congenital adrenal hyperplasia usually present in early childhood with a moderate form known as simple-virilizing congenital adrenal hyperplasia or with a severe form that causes salt wasting and virilization. Nonclassic congenital adrenal hyperplasia occurs in adolescent girls and women, who present with hirsutism and infertility.

Although congenital adrenal hyperplasia is a common disorder, pitfalls in coping with stressful situations and preventing an adrenal crisis are infrequently considered in routine clinical practice; in addition, the importance of educating parents about the management of the disorder can be underappreciated. Clinicians should take time to explain to the child and his or her family that the daily glucocorticoid regimen must not be interrupted by illness. Missed doses during a minor malaise such as a viral infection, particularly one that causes vomiting or diarrhea, can lead to shock and death. To prevent this, patients should be instructed to increase the doses of glucocorticoids during illness, surgery, or other forms of severe stress.

Most genetic disorders associated with adrenal insufficiency have characteristic clinical features that become evident early in life (Table 1). However, persons with some genetic disorders may present with late-onset adrenal insufficiency. Congenital adrenal hypoplasia is usually manifested in early childhood but may not be apparent until adolescence or early adulthood.

Adrenoleukodystrophy and adrenomyeloneuropathy are two phenotypes of an X-linked recessive disorder that affects 1 in 20,000 males. This disorder is characterized by spastic paralysis as well as adrenal insufficiency. Adrenoleukodystrophy begins in infancy or childhood, whereas adrenomyeloneuropathy usually begins in adolescence or early adulthood and has a milder and slower progression. It is important to realize, however, that adrenal insufficiency may be the only sign of the disorder; the diagnosis may be confirmed by measurement of very-long-chain fatty acids. This disorder accounts for up to 10% of all cases of adrenal insufficiency.

Like hereditary disorders of the adrenal gland, most genetic defects affecting the pituitary gland cause symptoms early in life; however, once again, clinicians should be aware that the signs and symptoms of some of these disorders have a late onset. For example, mutations in the gene encoding the pituitary transcription factor paired-like homeobox 1 (PROP1) cause a progressive deterioration of anterior pituitary function, including adrenal insufficiency, which necessitates replacement therapy with hydrocortisone in affected patients at a mean age of 18 years. Furthermore, secondary adrenal insufficiency has been noted in up to 60% of patients with the Prader-Willi syndrome. The Prader-Willi syndrome is the most common cause of obesity related to a syndrome (with a prevalence of 1 case in 10,000 to 20,000 obese persons) and is associated with a very high rate of sudden death (3%). Hydrocortisone treatment during the acute illness has been recommended in patients with this syndrome unless adrenal insufficiency can be ruled out.

It has been suggested that numerous other genes play critical roles in the development and function of the adrenal and pituitary glands in animal models. Putative genes include morphogens such as wingless and sonic hedgehog, growth factors, toll-like receptors, and scavenger molecules involved in cholesterol transport and oxidative stress. The adrenal stress response is impaired in mice with toll-like receptor 2 or 4 deficiency. Polymorphisms in the same receptors occur in humans at rates of up to 10%.
<table>
<thead>
<tr>
<th>Primary Adrenal Insufficiency</th>
<th>Gene No.*</th>
<th>Disorder</th>
<th>Clinical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymes in steroidogenesis and cholesterol metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-Hydroxylase (CYP21A2)</td>
<td>1589</td>
<td>Congenital adrenal hyperplasia</td>
<td>Ambiguous genitalia, hirsutism, presence or absence of salt wasting</td>
</tr>
<tr>
<td>3 Beta-hydroxysteroid dehydrogenase type II (HSD3B2)</td>
<td>3284</td>
<td>Congenital adrenal hyperplasia</td>
<td>Ambiguous genitalia, premature pubarche, hirsutism, presence or absence of salt wasting</td>
</tr>
<tr>
<td>Steroid 11-beta-hydroxylase (CYP11B1)</td>
<td>1584</td>
<td>Congenital adrenal hyperplasia</td>
<td>Virilization, impaired cortisol synthesis, hypertension due to high deoxycorticosterone level</td>
</tr>
<tr>
<td>Steroid 17-alpha-hydroxylase (CYP17A1)</td>
<td>1586</td>
<td>Congenital adrenal hyperplasia</td>
<td>Hypertension, primary amenorrhea, sexual infantilism</td>
</tr>
<tr>
<td>P-450 (cytochrome) oxidoreductase (POR)</td>
<td>5447</td>
<td>Congenital adrenal hyperplasia</td>
<td>Abnormal genitalia, skeletal malformation (the Antley–Bixler syndrome), impaired steroidogenesis</td>
</tr>
<tr>
<td>Steroidogenic acute regulatory protein (STAR)</td>
<td>6770</td>
<td>Congenital lipoid adrenal hyperplasia</td>
<td>Severe glucocorticoid and mineralocorticoid deficiency, growth failure</td>
</tr>
<tr>
<td>P-450 (cytochrome) side-chain cleavage (CYP11A1)</td>
<td>1583</td>
<td>P450 side-chain–cleavage deficiency</td>
<td>Clitoromegaly, early-onset or late-onset adrenal insufficiency without adrenal hyperplasia</td>
</tr>
<tr>
<td>7-Dehydrocholesterol reductase (DHCR7)</td>
<td>1717</td>
<td>Smith–Lemli–Opitz syndrome</td>
<td>Hyponatremia, hyperkalemia, cholesterol deficiency</td>
</tr>
<tr>
<td>Transcription factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear receptor subfamily 0, group B, member 1 (NR0B1)</td>
<td>190</td>
<td>Congenital adrenal hypoplasia</td>
<td>Hypogonadotropic hypogonadism in males</td>
</tr>
<tr>
<td>Nuclear receptor subfamily 5, group A, member 1 (steroidogenic factor 1) (NR5A1)</td>
<td>2516</td>
<td>Congenital adrenal hypoplasia</td>
<td>46, XY karyotype in females, with gonadal dysgenesis</td>
</tr>
<tr>
<td>Gene unknown, but located on chromosome X</td>
<td>64589</td>
<td>Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital abnormalities (IMAGE) syndrome</td>
<td>Intrauterine growth retardation, metaphyseal dysplasia, adrenal insufficiency, gonadal anomalies</td>
</tr>
<tr>
<td>Mitochondrial abnormality (gene unknown)</td>
<td></td>
<td>Keams–Sayre syndrome</td>
<td>External ophthalmoplegia, retinal degeneration, and cardiac conduction defects; other endocrine disorders</td>
</tr>
<tr>
<td>Storage disease — lipase A, lysosomal acid, cholesterol esterase (LIPA)</td>
<td>3988</td>
<td>Wolman’s disease</td>
<td>Bilateral adrenal calcification, hepatosplenomegaly</td>
</tr>
<tr>
<td>Sterol secretion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP-binding cassette, subfamily G (WHITE), member 5 (ABCG5)</td>
<td>64240</td>
<td>Sitosterolemia (also known as phytosterolemia)</td>
<td>Xanthomata, premature coronary artery disease, arthritis, short stature, gonadal and adrenal failure</td>
</tr>
<tr>
<td>ATP-binding cassette, subfamily G (WHITE), member 8 (ABCG8)</td>
<td>64241</td>
<td>Sitosterolemia (also known as phytosterolemia)</td>
<td>Xanthomata, premature coronary artery disease, arthritis, short stature, gonadal and adrenal failure</td>
</tr>
<tr>
<td>Corticotropin-receptor and signaling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Melanocortin 2 receptor (adrenocorticotrophic hormone) (MC2R)</td>
<td>4158</td>
<td>Familial glucocorticoid deficiency 1</td>
<td>Hyperpigmentation, increased height, facial features, such as hypertelorism and frontal bossing, lethargy and muscle weakness but normal blood pressure</td>
</tr>
<tr>
<td>Melanocortin 2 receptor accessory protein (MRAP)</td>
<td>56246</td>
<td>Familial glucocorticoid deficiency 2</td>
<td>Hyperpigmentation, normal height, hypoglycemia, lethargy and muscle weakness but normal blood pressure</td>
</tr>
<tr>
<td>Achalasia, adrenocortical insufficiency, alacrima (Allgrove, triple-A) (AAAS)</td>
<td>8086</td>
<td>Triple-A syndrome</td>
<td>Achalasia, alacrima, adrenal insufficiency, deafness, mental retardation, hyperkeratosis</td>
</tr>
<tr>
<td>Autoimmune adrenalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune regulator (AIRE)</td>
<td>326</td>
<td>Polyendocrine autoimmune syndrome type 1</td>
<td>Adrenal insufficiency, hypoparathyroidism, chronic mucocutaneous candidiasis</td>
</tr>
<tr>
<td>Gene unknown, but appears to be associated with the CD28/CTLA4 region on chromosome 2q33</td>
<td></td>
<td>Polyendocrine autoimmune syndrome type 2</td>
<td>Addison’s disease, thyroid disease, type 1 diabetes mellitus</td>
</tr>
<tr>
<td>Peroxisomal abnormalities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP-binding cassette, subfamily D (ALD), member 1 (ABCD1)</td>
<td>215</td>
<td>Adrenoleukodystrophy or adrenomyeloneuropathy</td>
<td>Weakness, spasticity, dementia, blindness, quadriplegia; adrenal insufficiency may be the only sign of adrenoleukodystrophy</td>
</tr>
<tr>
<td>ATP-binding cassette, subfamily D (ALD), member 2 (ABCD2)</td>
<td>225</td>
<td>Adrenoleukodystrophy or adrenomyeloneuropathy</td>
<td>Adrenomyeloneuropathy is a milder variant of adrenoleukodystrophy, with slower progression</td>
</tr>
<tr>
<td>Pituitary insufficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transcription factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HESX homeobox 1 (HESX1)</td>
<td>8820</td>
<td>Panhypopituitarism</td>
<td>Short stature, cognitive alterations, septo-optic dysplasia, delayed puberty, other signs of pituitary failure</td>
</tr>
<tr>
<td>Orthodenticle homeobox 2 (OTX2)</td>
<td>5015</td>
<td>Panhypopituitarism</td>
<td>Neonatal hypoglycemia, pituitary hypoplasia, ectopic posterior pituitary gland</td>
</tr>
<tr>
<td>LIM homeobox 4 (LHX4)</td>
<td>89884</td>
<td>Panhypopituitarism</td>
<td>Growth hormone, thyrotropin, and corticotropin deficiencies</td>
</tr>
<tr>
<td>SRY (sex-determining region Y)-box 3 (SOX3)</td>
<td>6658</td>
<td>Panhypopituitarism</td>
<td>Infundibular hypoplasia, hypopituitarism, varying degrees of mental retardation</td>
</tr>
<tr>
<td>PROP paired-like homeobox 1 (PROP1)</td>
<td>5626</td>
<td>Panhypopituitarism</td>
<td>Late-onset corticotropin deficiency, occasionally enlarged sella turcica</td>
</tr>
<tr>
<td>T-box 19 (TBX19)</td>
<td>9095</td>
<td>Congenital isolated adrenocorticotrophic deficiency</td>
<td>Low or absent cortisol production</td>
</tr>
<tr>
<td>Corticotropin synthesis — proopiomelanocortin (POMC)</td>
<td>5443</td>
<td>Proopiomelanocortin (POMC) deficiency syndrome</td>
<td>Early-onset obesity, red hair, pigmentation</td>
</tr>
<tr>
<td>Imprinting center — imprinted in Prader–Willi syndrome (nonprotein coding) (IPW)</td>
<td>3653</td>
<td>Prader–Willi syndrome</td>
<td>Hypotonia, mental retardation, obesity, and hypogonadism</td>
</tr>
</tbody>
</table>

* Gene numbers are from the gene database of the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/).
Whether mutations and gene polymorphisms involving these factors predispose affected persons to adrenal insufficiency requires clarification.

**Drugs as Predisposing Factors for Glucocorticoid Deficiency**

Drugs may cause glucocorticoid deficiency at hypothalamic, pituitary, and adrenal levels as well as at the sites of the glucocorticoid receptor, its signaling pathway, and peripheral glucocorticoid metabolism (Table 2). Suppression of the hypothalamic–pituitary–adrenal axis by exogenous glucocorticoid treatment is the most common cause of an impaired adrenal response. According to current estimates, nearly 1% of people in the general population (2.5% of those who are more than 70 years of age) are treated with long-term regimens of glucocorticoids for inflammation related to chronic disease. Since the proportion of elderly persons in the population is increasing, this figure is likely to rise.

To avoid an unexpected adrenal crisis in persons admitted to the hospital on an emergency basis, physicians should not only ask whether the patient has been taking glucocorticoids but should also be aware of the many obscure situations involving the use of glucocorticoids. Patients may be unaware of or reluctant to report exposure to glucocorticoids. These may include athletes, patients with cancer, patients with orthopedic conditions, and persons receiving adrenal extracts from sites on the Internet for what has been termed the “adrenal fatigue syndrome.” A lack of awareness that continuous use of topical glucocorticoids can suppress adrenal function is another widespread problem in daily practice. Concomitant use of glucocorticoids with inhibitors (e.g., itraconazole and fluconazole) have fewer adrenostatic effects, adrenal insufficiency that occurs after treatment with high doses has been reported. These compounds may therefore confer a predisposition to adrenal insufficiency during states of increased glucocorticoid requirement, such as severe stress in any kind of critical illness.

Etomidate, a commonly used, potent hypnotic agent, can also lower cortisol levels, even after a single injection of the drug. Therefore, in the case of any critically ill patient, the clinician should specifically ask about the use of etomidate; if the patient is receiving etomidate, the clinician should consider adding glucocorticoid therapy.

It is prudent to monitor adrenal function during severe stress in patients who are receiving novel tyrosine kinase–targeting drugs, since some of these compounds (e.g., sunitinib) have been shown in studies in animals to cause adrenal dysfunction and hemorrhage. The underlying mechanism may be related to the fact that vascular endothelial growth factor–receptor antagonists impair endothelial integrity, which may then lead to hemorrhage in the highly vascularized adrenal gland during stress.

Finally, since growing numbers of chronically ill patients take multiple drugs, clinicians must consider the additive effect of a combination of drugs with antiglucocorticoid effects. Recent comprehensive toxicologic in vitro assays have shown that increasing numbers of environmental compounds have the capability to impair adrenal steroidogenesis. Such compounds range from endocrine disruptors (e.g., phytoestrogen flavonoids) to widely used insecticides (e.g., lindane). The effect on adrenal function in humans, however, has yet to be determined.

**Diseases the Clinician Should Consider**

Diseases that cause outright adrenal insufficiency are rare. In addition to the genetic defects men-
tioned above, pituitary tumors, hemorrhage, infections, and autoimmune disease are the most common causes of complete adrenal insufficiency.1,2

There is evidence that the Waterhouse–Friderichsen syndrome, a meningococcal sepsis syndrome involving bilateral adrenal hemorrhage, is not limited to meningococcal infection, but may occur after infection with staphylococci or other pathogens.29,30 Considering the steady increase in methicillin-resistant Staphylococcus aureus and opportunistic infections, such causes of adrenal insufficiency should be kept in mind.

Tuberculous adrenalitis was once the most frequent cause of primary adrenal insufficiency, and this remains the case in many developing countries. In recent years, there has been a resurgence of tuberculous adrenalitis as a result of the increasing number of patients with the acquired immunodeficiency syndrome. Adrenalitis due to cytomegalovirus infection is especially common in patients with the human immunodeficiency virus infection, and apart from numerous opportunistic pathogens, antifungal therapy may further compromise adrenal function in these persons.31

In the Western world, glucocorticoid deficiency due to autoimmune disease accounts for up to 80% of the cases of primary adrenal failure.1,2 Patients with autoimmune diseases, as well as some of their family members, frequently have multiple organ-specific endocrine disorders as part of an autoimmune polyglandular syndrome. Autoimmune thyroid disease is the most commonly observed organ manifestation, whereas vitiligo, primary gonadal failure, atrophic gastritis, and type 1 diabetes are less common.1,2 Latent or subclinical forms may be more frequent than hitherto assumed.32 Consequently, the possibility of adrenal dysregulation should be considered in all patients who have any form of autoimmune endocrine or metabolic disorder (Fig. 1).

The diagnosis of adrenal insufficiency is also frequently overlooked in inpatients with hyponatremia.33 Up to 20% of patients with normovolemic hyponatremia have secondary adrenal insufficiency that is due in most cases to the empty sella syndrome, Sheehan’s syndrome, or pituitary tumors. In these patients, plasma antidiuretic hormone levels are elevated, most likely owing to a

<table>
<thead>
<tr>
<th>Table 2. Drug-Related Glucocorticoid Insufficiency.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mechanism</strong></td>
</tr>
<tr>
<td><strong>Primary adrenal insufficiency</strong></td>
</tr>
<tr>
<td>Hemorrhage</td>
</tr>
<tr>
<td>Inhibition of cortisol-synthesis enzyme</td>
</tr>
<tr>
<td>P-450 aromatase (CYP19A1)</td>
</tr>
<tr>
<td>3 Beta hydroxysteroid-dehydrogenase type 2 (HSD3B2)</td>
</tr>
<tr>
<td>Mitochondrial cytochrome P-450–dependent enzymes (e.g., CYP11A1, CYP11B1)</td>
</tr>
<tr>
<td>Activation of cortisol metabolism</td>
</tr>
<tr>
<td>Enzyme induction of P-450 cytochromes (CYP2B1 and CYP2B2), which reduces corticosteroid levels</td>
</tr>
<tr>
<td>Induction of drug-metabolizing cytochrome P-450 enzymes (primarily CYP3A4)</td>
</tr>
<tr>
<td><strong>Secondary adrenal insufficiency</strong></td>
</tr>
<tr>
<td>Suppression of corticotropin-releasing hormone and corticotropin synthesis</td>
</tr>
<tr>
<td>Peripheral resistance to glucocorticoids</td>
</tr>
<tr>
<td>Interaction with glucocorticoid receptor</td>
</tr>
<tr>
<td>Inhibition of glucocorticoid-induced gene transcription</td>
</tr>
</tbody>
</table>
failure of endogenous glucocorticoid to suppress
the hormone. Hydrocortisone-replacement therapy
leads to rapid normalization of serum sodium
levels.33

Another underdiagnosed clinical problem is
hypopituitarism due to brain injury. Pituitary dys-
function occurs in up to 30% of patients with
trauma to the brain and may not appear until
months or years after the traumatic incident.34

**Glucocorticoid Insufficiency Related to Critical Illness**

Disease processes that cause a predisposition to
adrenal failure during periods of increased stress
appear to be more frequent than previously as-
sumed. Terms such as “relative adrenal insufficien-
cy” and, more accurately, “critical illness–related
corticosteroid insufficiency” have been used to
classify these conditions.

Recently, expert panels and consensus confer-
ences involving intensivists, pulmonologists, and
endocrinologists have examined the clinical rele-
vance of adrenal insufficiency and have provided
recommendations for diagnosis and manage-
ment.35 The syndrome has been defined as inade-
quate glucocorticoid activity in relation to the se-
verity of the patient’s illness and has been most
prominently investigated in cases of sepsis and
septic shock.36-39 The best test currently available
for establishing the diagnosis is the 1-μg corti-
cotropin stimulation test, in which cortisol levels
are measured 30 minutes after stimulation, with
a level of less than 25 μg per deciliter (690 nmol
per liter) or an increment over baseline of less than
9 μg per deciliter (250 nmol per liter) representing
an inadequate adrenal response. An inadequate
response to corticotropin testing occurs in up to
60% of patients with sepsis38; however, declining
cortisol-binding globulin levels in patients with
sepsis may moderate the impairment of active
free-cortisol production. To better define this syn-
drome, endocrine testing for adrenal insufficiency
in patients with sepsis or other critical illnesses
must be improved. Confounding factors such as
variability in sampling and cortisol assays, includ-
ing interfering antibodies, need to be considered.
Measurement of free cortisol or widespread im-
plementation of more accurate mass spectrometry
methods might help to overcome these analytic
limitations.40,41

Mechanisms of adrenal suppression in sepsis
remain largely unclear; however, cytokines such
as tumor necrosis factor-α or other peptides
derived from blood cells — known as corticostatins
— that may compete with corticotropin on its re-
ceptor42 influence adrenal regulation during in-
flammation, induce tissue resistance to glucocor-
ticoids, or have both effects.43 In order for an
adrenocortical cell to respond adequately to the
severe stress of inflammation, intraadrenal cell–
cell communication needs to be intact.42 This in-
volves a close crosstalk of adrenocortical cells with
chromaffin cells, as well as endothelial cells and
intraadrenal immune cells.42

As summarized in Figure 2, it has been suggested that neuropeptides,
neurotransmitters, oxidative stress, altered adrenal
blood flow, and substrate deficiency due to low
lipoprotein cholesterol levels and drug interactions
affect adrenal integrity.42,44,45 Septicemia itself and
medications used during its treatment (Table 2)
may interfere with receptor signaling associated
with the membrane microdomains, with the
machinery of cholesterol transport and storage, with
enzymes involved in steroidogenesis, and with the
mitochondrial function that is critical for sterido-
genesis.46 Furthermore, impaired blood supply to
the pars distalis may induce pituitary ischemia,
necrosis, or both during septic shock, and an in-
creased accumulation of nitric oxide, superoxide,
or central neuropeptides or prostaglandins con-
tributes to a decrease in hypothalamic–pituitary
hormones in patients with sepsis (Fig. 2).

The clinical consequences of impaired adrenal
function in patients with sepsis remain unclear.
A recent large, multicenter, randomized, double-
blind, placebo-controlled trial showed that al-
though hydrocortisone does help to reverse septic
shock, it does not improve survival.39 Therefore,
general use of glucocorticoids in patients with
sepsis does not appear to be warranted. A clearer
understanding of the relevant causes of adrenal
insufficiency in patients with sepsis and a more
refined definition of subgroups that may benefit
from glucocorticoid therapy are required. Addi-
tional factors that may contribute to the conflicting
results include the severity of the sepsis, the
duration of therapy, and the use or nonuse of
fludrocortisone39 to treat hypoaldosteronism. It is
imperative that we gain a better understanding of
both the true pattern of cortisol secretion during
critical illness and the pharmacokinetics of vari-
Figure 1. Clinical Checklist for Adrenal Insufficiency.

The figure shows a practical chart for identifying adrenal insufficiency among persons in 10 major risk groups with a potential predisposition to clinical or subclinical adrenal insufficiency. The corresponding list of patient history and clinical signs should raise awareness about a possible adrenal dysfunction, particularly in the critically ill patient, and allow timely initiation of therapy. HPA denotes hypothalamic–pituitary–adrenal.
ous hydrocortisone-replacement therapies. Finally, the adverse effects of glucocorticoid replacement on insulin resistance, protein catabolism, and immunosuppression may be aggravated by high-fat parenteral nutrition in critically ill patients, since lipids have recently been shown to increase the action of glucocorticoids.47

On the basis of available evidence, current recommendations, and good clinical practice, and irrespective of the results of adrenal testing, moderate doses of hydrocortisone (200 to 300 mg per day) should be given soon after the onset of septic shock in patients who remain hypotensive despite adequate administration of fluids and vasopres- sor agents.35,36,39 Current evidence is insufficient to recommend the replacement of other steroids that are suppressed in patients with sepsis, including mineralocorticoids and adrenal androgens.1,48,49

In addition to impairment of adrenal glucocorticoid regulation, hypoaldosteronism occurs frequently in critically ill patients. This condition probably does not result from a selective effect on the adrenal zona glomerulosa or aldosterone synthase; rather, it seems likely that the same mechanisms that lead to glucocorticoid insufficiency account for the hypoaldosteronism. Future studies will need to address these mechanisms. The role of mineralocorticoid supplementation in the treatment of critically ill patients is already being investigated in ongoing multicenter trials.

Several randomized studies have assessed the role of glucocorticoid treatment in patients with acute lung injury or the acute respiratory distress syndrome.50,51 A consistent finding in these studies was that such treatment resulted in an accelerated resolution of the disorders.35 In addition, preliminary data suggest that glucocorticoids have a beneficial effect in patients with severe pancreatitis52 and in those who have undergone trauma with hemorrhagic shock, as well as in patients who have just undergone cardiac surgery53 and those who are being weaned from mechanical ventilation.54

It has become evident that patients with liver diseases have adrenal disturbances. Signs of adrenal insufficiency are present in 33% of patients with acute liver failure, 65% of patients with chronic liver disease and sepsis, and 92% of patients who have undergone a liver transplantation.45 Consequently, the term “hepato–adrenal syndrome” has been introduced. It has been suggested that immunosuppression with glucocorticoids in liver-transplant recipients has masked the syndrome. Patients with liver diseases have very low lipoprotein levels, and a substrate shortage may therefore lead to an adrenal exhaustion syndrome. However, a reduction in total cortisol may reflect a decrease in cortisol-binding globulin rather than a decrease in free cortisol. Nevertheless, patients with liver diseases should be carefully monitored for symptoms and signs of adrenal insufficiency and may benefit from glucocorticoid-replacement therapy.55

**CONCLUSION**

In 1855, Thomas Addison concluded that “my experience, though necessarily limited, leads to a belief that [adrenal insufficiency] is by no means
of very rare occurrence and that were we better acquainted with its symptoms and progress, we should probably succeed in detecting many cases, which in the present state of our knowledge may be entirely overlooked or misunderstood.”

Today, we are better acquainted with the symptoms of this disease and better able to manage it with a simple glucocorticoid-replacement regimen; however, clinicians must be aware of the growing list of causes and predisposing factors involved in the development of this life-threatening disorder. A simplified checklist of groups that are at in-
increased risk for adrenal impairment may help to raise awareness among clinicians (Fig. 1). This information is important, since timely and adequate hydrocortisone replacement in patients with acute adrenal insufficiency represents a lifesaving and effective solution in medical emergencies.

Supported by grants from Deutsche Forschungsgemeinschaft (BO 1141/8-1 and SEB 655 – TP A6), from the Sander Foundation, and from the Center for Regenerative Therapies Dresden.

No potential conflict of interest relevant to this article was reported.

I thank Dr. Graeme Eisenhofer, Kathy Eisenhofer, Dr. Wiebke Aft, and Dr. Monika Ehrhart-Bornstein for their careful reading of the manuscript.

REFERENCES


Copyright © 2009 Massachusetts Medical Society.